
Aggregations on pets Table

Null Values in employees_null Table

32. Count the number of rows in the pets table:

SELECT COUNT(*) AS total_pets

FROM pets;

33. Count the number of female pets:

SELECT COUNT(*) AS female_pets

FROM pets

WHERE sex = 'Female';

34. Count the number of female cats:

SELECT COUNT(*) AS female_cats

FROM pets

WHERE sex = 'Female' AND species = 'Cat';

35. Calculate the mean age of pets:

SELECT AVG(age) AS mean_age

FROM pets;

36. Calculate the mean age of dogs:

SELECT AVG(age) AS mean_dog_age

FROM pets

WHERE species = 'Dog';

37. Calculate the mean age of male dogs:

SELECT AVG(age) AS mean_male_dog_age

FROM pets

WHERE species = 'Dog' AND sex = 'Male';

38. Get count, mean, min, and max age of pets:

SELECT

COUNT(*) AS total_pets,

AVG(age) AS mean_age,

MIN(age) AS min_age,

MAX(age) AS max_age

FROM pets;

39. Repeat the above with rounded averages and readable labels:

SELECT

COUNT(*) AS "Total Pets",

ROUND(AVG(age), 1) AS "Average Age",

MIN(age) AS "Youngest Age",

MAX(age) AS "Oldest Age"

FROM pets;

Aggregations on employees Table

Grouping and Aggregations

40. Count rows with missing salaries:

SELECT COUNT(*) AS missing_salaries

FROM employees_null

WHERE salary IS NULL;

41. Count salespeople with non-missing salaries:

SELECT COUNT(*) AS salespeople_with_salaries

FROM employees_null

WHERE job_title = 'Salesperson' AND salary IS NOT NULL;

42. Calculate mean salary for employees who joined after 2010:

SELECT AVG(salary) AS mean_salary_after_2010

FROM employees

WHERE CAST(SUBSTR(startdate, 1, 4) AS INTEGER) > 2010;

43. Calculate mean salary in Swiss Francs (CHF):

SELECT AVG(salary * 0.97) AS mean_salary_chf

FROM employees;

44. Calculate mean salary in USD and CHF:

SELECT

PRINTF('$%,.0f', AVG(salary)) AS "Mean Salary in USD",

PRINTF('%.0f Fr.', AVG(salary * 0.97)) AS "Mean Salary in CHF"

FROM employees;

45. Calculate average age of pets by species:

SELECT species, AVG(age) AS avg_age

FROM pets

GROUP BY species;

46. Repeat the above with readable labels:

SELECT species AS "Species", AVG(age) AS "Average Age"

FROM pets

GROUP BY species;

47. Get count, mean, min, and max age by species:

SELECT

species,

COUNT(*) AS total_pets,

AVG(age) AS avg_age,

MIN(age) AS min_age,

MAX(age) AS max_age

Frequent Names

Transactions Table

FROM pets

GROUP BY species;

48. Show mean salaries by job title:

SELECT job_title, AVG(salary) AS avg_salary

FROM employees

GROUP BY job_title;

49. Show mean salaries by job title in New Zealand Dollars (NZD):

SELECT

job_title,

AVG(salary * 1.65) AS avg_salary_nzd

FROM employees

GROUP BY job_title;

50. Show count, mean, min, and max salaries by job title:

SELECT

job_title,

COUNT(*) AS num_employees,

AVG(salary) AS avg_salary,

MIN(salary) AS min_salary,

MAX(salary) AS max_salary

FROM employees

GROUP BY job_title;

51. Show mean salaries by job title, sorted descending:

SELECT

job_title,

AVG(salary) AS avg_salary

FROM employees

GROUP BY job_title

ORDER BY avg_salary DESC;

52. Top 5 most common first names:

SELECT

firstname,

COUNT(*) AS name_count

FROM employees

GROUP BY firstname

ORDER BY name_count DESC

LIMIT 5;

53. Show first names with exactly 2 occurrences:

SELECT firstname

FROM employees

GROUP BY firstname

HAVING COUNT(*) = 2;

54. Preview the transactions table:

SELECT *

FROM transactions

LIMIT 5;

55. Top 5 largest orders by number of items:

SELECT

order_id,

customer_id,

SUM(quantity) AS total_items

FROM transactions

GROUP BY order_id, customer_id

ORDER BY total_items DESC

LIMIT 5;

56. Total cost of each transaction:

SELECT

order_id,

SUM(unit_price * quantity) AS total_cost

FROM transactions

GROUP BY order_id;

57. Top 5 transactions by total cost:

SELECT

order_id,

SUM(unit_price * quantity) AS total_cost

FROM transactions

GROUP BY order_id

ORDER BY total_cost DESC

LIMIT 5;

58. Top 5 customers by total revenue:

SELECT

customer_id,

SUM(unit_price * quantity) AS total_revenue

FROM transactions

GROUP BY customer_id

ORDER BY total_revenue DESC

LIMIT 5;

59. Top 5 employees by revenue generated:

SELECT

employee_id,

SUM(unit_price * quantity) AS total_revenue

FROM transactions

GROUP BY employee_id

ORDER BY total_revenue DESC

LIMIT 5;

60. Customer who worked with the most employees:

SELECT

customer_id,

COUNT(DISTINCT employee_id) AS num_employees

FROM transactions

GROUP BY customer_id

ORDER BY num_employees DESC

LIMIT 1;

61. Customers with total business over $80,000:

SELECT

customer_id,

SUM(unit_price * quantity) AS total_revenue

FROM transactions

GROUP BY customer_id

HAVING total_revenue > 80000;

